If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=4x=2x^2+3
We move all terms to the left:
3x^2-(4x)=0
a = 3; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·3·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*3}=\frac{0}{6} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*3}=\frac{8}{6} =1+1/3 $
| 4+6n=-1+5n | | y+-54=-94 | | -100=-5(6r+2) | | 3^x=9^{X-2} | | 2+4(1+4n)=-90 | | 3(n+6)=(18+3n) | | 2+4(1+4n)=90 | | 43=6k-2+33 | | 3x+5x+44=180 | | 6+w=0 | | 1/4(a+3)=1/2(a+6) | | 5/4=x+3/7 | | 7x-7+1x-8=-31 | | y=-(8) | | 5/4=x+4/7 | | 2(-4x-8)=2(-7x-3) | | 3a=3+3 | | 14x-14=84 | | x+9-2x/3+2.3=-1.2 | | y=-(1) | | 6+t3(5t-4)=12(2t-5 | | 43=6(k-1/3)+33 | | 4m-12=2m+2 | | 5y+2-3y=8 | | n^2-14n+20=71 | | y+7=y/9 | | (8.8+28/4)-2y-(-7+y)=3 | | -7x=4(3-5x)=0 | | (4+2)×r=54 | | 7-2p=14-4p | | 4(x+1.5)=13.5+2.2x-0.7x | | 108-3x=-15 |